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Chapter 0. Foundations and Previews
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0-1. Why Calculus

1) Value of f(x) when x=c:

Without Calculus

With Differential Calculus

You directly find the value of the function f at
X=c.

You consider the limit of f(x) as x approaches c,

which can be more precise, especially if f is not
continuous at c.

\

3\4 5

\

3\4 5

2) Slope of a line:

Without Calculus

With Differential Calculus

The slope is the change in y divided by the
changeinx (Ay / Ax).

The slope of a curve at a point is found using the
derivative (dy / dx ), representing the
instantaneous rate of change.

3) Secant line to a curve:

Without Calculus

With Differential Calculus

A secant line intersects the curve at two points,
representing the average rate of change between
those points.

A tangent line touches the curve at one point,
representing the instantaneous rate of change at
that point.
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4) Area under the line or curve:

10

Without Calculus

With Differential Calculus

You find the area by multiplying the length and
width of the rectangle/polygon.

You find the area under a curve using integration,
which can handle more complex shapes.

i 5 10 5 20

5) Length of a line segment:

Without Calculus

With Differential Calculus

The length is the distance between two points.

You find the length of an arc (curved line) using
integration.

6) Surface area of a cylinder:

Without Calculus

With Differential Calculus

You calculate the surface area using the formula
for a cylinder.

You find the surface area of a solid of revolution
using integration, which can handle more
complex shapes.

7) Mass of a solid of constant density:

Without Calculus

With Differential Calculus

The mass is found by multiplying the volume by
the constant density.

You calculate the mass of a solid with variable
density using integration.

8) Volume of a rectangular solid:

Without Calculus

With Differential Calculus

The volume is found by multiplying length, width,
and height.

You find the volume of a region under a surface
using integration.
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0-2. Increasing & Decreasing functions (use in curve sketching)

Examples:

1) Determine the domain and range of the function g(x)=2e”".

The function g(x)=2e”" is a transformation of the basic exponential function e*.

- Domain: The domain of e” is all real numbers, (—o0,0). Since g(x)=2e" is just a vertical stretch,
the domain remains the same.
Domain: (—o0,)

- Range: The range of . e . is (0,00). Multiplying by 2 stretches the range but does not change its
lower or upper bounds.

Range: (0,x)

2) Determine the domain and range of the function g(x)=2sin(x).

The function g(x)=2sin(x) is a vertical stretch of the basic sine function sin(x).

- Domain: The domain of sin(x) is all real numbers, (—o0,0) . The vertical stretch does not affect the
domain.

Domain: (—o0,)

Range: The range of sin(x) is [—1,1]. Multiplying by 2 stretches the range to [-2,2].
Range: [-2,2]
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12

1
3) Determine the domain and range of the function g(x)= E
X

1 1
The function g(x) =2— is a vertical compression of the basic function —.
X X

1
- Domain: The domain of — is all real numbers except x =0, because division by zero is
X

undefined. The vertical compression does not affect the domain.
- Domain: (—o0,0) U (0,)

X
vertical compression does not affect the range.
- Range: (—,0) U (0,x)

1 1
- Range: The range of — is all real numbers except y =0, since — never equals zero. The
X
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0-3. Limit Foundation

Examples: Find limits for the graph below

13

710/1 2 3\4 5 o

710/1 2 3\4 5

1) Iirr;f(x):z

2) Iirr;f(x):z

3) Iirr;f(x):z

10
y 2 3
-5 0 5
1 .1 .1 1
4) lim —=-o0 5) lim—=w 6) lim — =0 7) lim — =0
x>0~ X x—>0" X x>0~ X x—>0" X
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" 87554321

1234567809

) X
8) lim——=—w
x-1" x—1

) X
9) lim——=w
x-1" x—1

10) limlog(x)=0

11) limlog(x)=—o
x—0"

12) Given the graph of f(x) above, find the limit.

° w<>—\ —o
Iiry f(x)=0 lim f(x)=0 Iirg f(x)=0 Iirfr;ff(x):oo
Iirﬁr;f(x)=—2 Iir2+f(x)=—2 Iir{)lf(x):l Iirglif(x)=0

lim f(x)=o0

Iir?if(x):—oo

Iirgf(x)zl

Iirgf(x):—oo

Iirr71+f(x)=—1

Iirr717f(x)=1

Iirgf(x):—oo

Iirgf(x):—él

f(=2)=1

f(7)=2
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0-4. Basic Theorems in Calculus (Preview)

Theorem: Intermediate Value Theorem, IVT

If f is continuous on a closed interval [a, b] and k is any number between f(a) and f(b), then there exists
at least one number cin (a, b) such that f(c) = k.

If f(b)>0 and f(a)<0, then there
exists at least one solution.
¥ = ¥
f(b) _y_ﬂxj (5 Y y=fl(xz)
2 ) ) y=f(x) 20} P A
ke il a |0 :
(a)|—1 N N A ; s :
i falfl T ) AE:
0|/ a c b | Z P
C) (JI! r“, 'I', r." [) xX

Definition of the Average Rate of Change
The average rate of change of y (slope m) with respect to x over the interval [a,b] is given by:

__Ay_fb-fla) _ fla+M)-fl@) _ fla+h)-f(@)
Ax b—a Ax h

where h=Ax=b—a.

y y=f(z) y v=/(z)
F(b) < _ y y=f(z) %
FBY e

Ay fla+Adzx) /‘(g)) )
. —Aa
o P i flatdz)—fla) (a) r. -
f({l) . Az f[@] /£ e - e \"'"bf({ I
R o
0 a b x 0a at+dxr O « [} x
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Definition of the Instant Rate of Change

The graph demonstrates the concept of secant lines approaching the tangent line at a specific point on a
curve as the interval between the points on the secant line ( Ax ) approaches zero. This visual
representation helps in understanding the definition of the derivative, which is the slope of the tangent
line at a given point on the function.

Y= f(l') ‘;" I '
a8 : - X
0ol x X,
o fla+Ax)—fla) oy FOG) = flx)
flla)= lim ™ f (Xl)‘xlz'inxl—x —

2 1

- Secant Lines: The lines passing through points P and Q are secant lines. These lines intersect the curve
at two points and approximate the slope of the function between those points.

- As Ax decreases (meaning Q moves closer to P), the secant lines approach the slope of the
tangent line at P.

- Tangent Line T:

- Definition: The tangent line at point P is the line that just touches the curve at P without crossing
it. This line represents the instantaneous rate of change of the functionat x =a.
- Slope of the Tangent Line: The slope of the tangent line at P is the limit of the slopes of the

secant lines as Ax approaches zero.

- The slope of the tangent line at x = ¢ is given by the derivative: (replace Axto h)

fla+h)-f(a)
h

f'la)=lim
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Theorem: The Mean-Value Theorem (MVT)

If f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there
exists at least one number c between a and b such that

f(b)-f(a)

P AL

The slope of the secant line is equal to the slope of the tangent line.

A
Tangent line

J(b)| :
Secant line

“Ola o e b ¥
)

(Y [Ep—

Qf--
| [

The Mean-Value Theorem guarantees that there is at least one point c in the interval (a, b) where the
tangent line has the same slope as the secant line.

Theorem: Rolle's Theorem (Special case of the Mean Value Theorem)
Let f be continuous on the closed interval [a, b] and differentiable on the open interval (a, b).

If f(b)= f(a), then there exists at least one number c between a and b such that

fB)=1(@) _ iy
b—a

B
-

Tangent line

Secant line

o
o f= ===

i

N

o

Rolle's Theorem will guarantee the existence of an extreme value (relative maximum or relative
minimum) in the interval.
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Maxima and Minima

- Maxima: At a local maximum, the derivative changes from positive to negative.

- Minima: At a local minimum, the derivative changes from negative to positive.

- Tangent lines at the critical points where f”(a) =0 confirm the behavior of the slopes, showing a

peak for maxima and a valley for minima.

Maxima (relative maximum at x=a)

Minima (relative minimum at x=a)

f(a)=0

' (x)>0 F(x)<0

a xr

y=f(x)

f(x)<0 f(x)>0

(a)=0
a i‘

- Function y = f(x): The curve represents the
function.

- Critical Point at a: The point where the slope of
the tangent is zero, f'(a)=0.

- Leftofa: f'(x)>0, the function is increasing.

- Rightofa: f'(x) <0, the function is
decreasing.

- This indicates a local maximum at x =q.

- Function y = f(x): The curve represents the

function.

- Critical Point at a: The point where the slope of
the tangent is zero, f'(a)=0.

- Leftofa: f'(x)<0, the function is decreasing.
- Rightofa: f'(x)>0, the function is increasing.

- This indicates a local minimum at x =a.

¢

- Shows the tangent lines with positive slopes
approaching x =a from the left and negative
slopes after x = a, confirming the maximum.

- Concave Downward

- Shows the tangent lines with negative slopes
approaching x = a from the left and positive
slopes after x = a, confirming the minimum.

- Concave Upward
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0-5. Behavior of the Particle about Position vs. Time Curve (Preview)

Observe behavior of the particle about the position versus time curve.

At t=t,

- Curve has positive slope.

- Curve is concave down.
- s(t,)>0

- s'(t,)=v(t,) >0

- s"(t,)=alt,) <0

Particle is on the positive side
of the origin.

Particle is moving in the
positive direction.

Velocity is decreasing.

Particle is slowing down.

v(t,)>0 and a(t,) <0

2. At t=t,

- Curve is concave down.
- s(t,)>0

- s'(t,)=v(t,) <0

- s"(t,)=alt,) <0

- Curve has negative slope.

Particle is on the positive side
of the origin.

Particle is moving in the
negative direction.

Velocity is decreasing.
Particle is speeding up.

v(t,) <0 and a(t,) <0

ALt =t,

- Curve is concave up.
- s(t,)<0
- s'(t,)=v(t,) <0

- s"(t,)=alt,)>0

- Curve has negative slope.

Particle is on the negative side
of the origin.

Particle is moving in the
negative direction.

Velocity is increasing (slope is
increasing by tis progressing).

Particle is slowing down.

v(t,) <0 and a(t,) >0

4. At t=t,

- Curve has positive slope.

- Curve is concave up.
- s(t,)<0
- s'(t,)=v(t,)>0

- s"(t,)=a(t,)>0

Particle is on the positive side
of the origin.

Particle is moving in the
positive direction.

Velocity is increasing.
Particle is speeding up.

v(t,) >0 and a(t,) >0
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0-6. Derivative Test (Preview)

Concept Expansion from Pre-Calculus:

1) Find local maximum (D) and local minimum (E) values and the inflection point (F) for
f(x)=x> —3x> —4x +12 without using Calculus Concept?

Solution

- We can easily find roots (A, B & C) by factorization = roots: x=-2,2,3

- However, it is not easy to find x values for D (local max), E(local min) and F(Inflection point). Before
calculus, to solve this problem, we may need to use the approximation method.

- Once we learn about derivatives, then we can find these points easily.
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2) Sketch the polynomial graph of f(x)=x*>—3x>—24x+32 by using f'(x), f"(x)

Solution Steps:

1.Find f(x), f'(x), f"(x)
- fx)=x>=3x>-24x+32
- fl(x)=3x*-6x-24
- f"(x)=6x-6
2. Find the first derivative (f’(X)) equal to zero to find critical points and its functional values if exist
- 3 -6x-24=0=3(x-4)(x+2)=0=>x=4,x=-2
- f(=2)=(-2)’ =3(=2)* —24(-2)+ 32 =60 (maxima)
- f(4)=(4)> —3(4)* —24(4) + 32 =—48 (minima)
3. Set the second derivative (f"(X) ) equal to zero to find inflection points and its functional values if
exist
- 6x-6=0=6(x-1)=0=x=1
- f(1)=(1)’ -3(1)* —24(1) + 32 =6 (inflection point)
4. Determine the y-intercept
- f(0)=0%-3(0)" —24(0)+32=32

5. Determine the concavity and relative extrema using the first and second derivatives
Number of critical points (including inflection points): 3, so need 4 sections on the graph

f(x)=x>-3x>-24x+32
Local Local
+ Max = = = Min +
fl(x)=3x>-6x-24 X=— x=4
Critical Critical
Increase . Decrease . Increase
Point Point
- - - 1 + + +
14
f'(x)=6x—6 Inflection
Concave Down Point Concave Up
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6. Sketch the graph:

f'x)

f'(x)

o

' /
‘\ 30 / 30
\ 20 / 20
/
v 10 10
/

-0 -8 -6 -4 2 4 6 8 10 -0 -8 -6 2 8 10
<10 // =10
_20\_’/ -20
-30 -30
-40 —-40

vk wnN e

to (1,6).

6. Switch to concave up from (1,6) to (4,—48) and continue concave up to (90,).

Plot the relative maximum at A(—2,60).
Plot the relative minimum at B(4,—48).
Plot the inflection point at C(1,6).

Plot the y-intercept at D(0,32).

Draw the curve concave down from (—0,—2), then continue concave down through (—2,60)
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x> —4x+3
3) Sketch the rational function graph of f(x)=————— by using f'(x), f"(x)
X

X —4x+3
To sketch the rational function f(x)=———— using its first and second derivatives, follow these
X

steps:

2
X —4x+3 3
1. Simplify the Function: f(x)=———=x—-4+—
X X
2. Find Asymptotes
- Vertical Asymptote: Occurs where the denominator is zero: x=0

- Slanted (oblique) Asymptote: y=x—4

3. Find Intercepts
- x-intercepts: Set f(x)=0: x> —4x+3=0=(x—-1)(x—3)=0, So, x=1 and x=3.

- y-intercept: Set x =0: The function is undefined at x =0, so there is no y-intercept.

4. Find Critical Points (First Derivative)

- Find the first derivative f'(x): f'(x) =di(x—4 +i) =1 —iz
X X

X
, 3
- Set f'(x)=0:1-—=0x=%+3
X

5. Find Points of Inflection (Second Derivative)

- Find the second derivative f"(x): f"(x) :i(l—%J = %
dx X X

- Set f"(x)=0": £:0
X

3

- There are no real solutions. So, there are no points of inflection.
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6. Analyze Intervals of Increase/Decrease

3
- For x>0: f'(x)=1-—::
X

- If x>«/§, f'(x)>0 (positive).
S If0<x<A+3, f'(x)<0 (negative).

- For x<0: f'(x)zl—iz:
X

- Always f'(x)<0 (negative).

So, x=—/3 and x=«/§ are critical points:
- Increasing on (\/g,oo)

- Decreasing on (0,\/5) and (—0,0)
7. Sketch the Graph

- Asymptotes: Vertical asymptote at x =0, Horizontal asymptoteat y =1
- Intercepts: x-interceptsat x=1 and x=3

- Critical Points:

- Local Minimum at x =J§ :y=-05
- Local Maximum at x = —\/§ cy=-7.5
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Alternate simple way by graphing f'(x) & f"(x)
X’ —3x—4
fX)=———
X
Find: (Refer below table)
- Find f'(x) , then find all critical points candidates by factorizing if exists
- Find f"(X) , then find all inflection points candidates by factorizing if exists
- Find signs (positivity or negativity) before and after (all candidates) critical/inflection points
- If f'(x)=0,the f(x)isincreasing on the ranges
- If f'(x)<0,the f(x)is decreasing on the ranges
- 1f f"(x)>0,the f(x)is concave-up on the ranges
- 1f f"(x)<0,the f(x)is concave-down the ranges
- Find all critical/inflection points from candidates, then find f(x) values (y-values)
- If local min/min y-values from critical points.
Local Max 0 Local Min
f'(X)=1—i * X=\/§ - (undefined) - X=_\/§ *
X Critical Not critical Critical
Increase . decrease . decrease . Increase
Point point Point
0 + + +
" 6 B B B (undefined)
f'ix) Y Inflection
X Concave Down . Concave Down
Point
3 6 x> —3x—4
f’(X)=1—7, f”(X)ZF f(x)=

1.7, -7.5)
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0-7. Derivative Formula (Preview)

1) Derivative and Integral Rules

26

Derivative Integral (Antiderivative)

1 in =0 Ide =C

dx
2 ix =1 Ildx =x+C

dx

d ) 1 n+1
3 —| x" |=nx " ldx =

dx ] I ) ] - n+ 1

d X X
4 ae]:e

—

d 1
5 5[Inx]—;

J

x |~

[
[e de e’ +C
E

}dx Inx+C

6 a[nsznxlnn

J[Jax=c

nn
7 %[sinx]:cosx I[cosx]dx:sinx+C
8 i[cosx]z—sinx “sinx]dx=—cosx+C
dx
d
9 a[tanx] =sec’ x J[secz x]dx =tanx+C

10 i[cot x]=—csc’ x
dx

j[cscz x]dx =—cotx+C

11 di[secx] —=secxtanx '[[tanxsecx]dx =secx+C
X
12 di[cscx] = —cscxcotx “cotxcscx]dx =—cscx+C
X
d 1 1
13 —arcsinx [= dx =arcsinx+C
dX[ ] 1-x° I\/1—x2
14 i[arccosx]:— ! J';dx:arccoswrc
1-x° 1-x°
d
15 a[arctanx]z T Il+x2 dx =arctanx +C
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d
16 a[arccotx]z—“_x2 I1+x2 dx =arccotx +C
d 1 1
18 —arcsecx|=—F— ————dx=arcsecx+C
dX[ ] xVx* -1 IX\/xz—l
1

19 i[a reescx]=—

dx xVxt -1

dx =arccscx +C

I;
Xt -1

2) General Differentiation Rules

Let c be a real number, n be a rational number, u and v be differentiable functions of x, let f be a
differentiable function of u, and let a be a positive real number (g =1).

Differentiation Rules

1 Constant Rule

d
a[C] =0

2 Constant Multiple Rule

d ’
—[cul=cu
dx

3 Product Rule

d bt
—[uvl=uv' +vu
dx

4 Chain Rule

d ! !
E[f(u)] = fluu

5 (Simple) Power Rule

d 5 d
—[x"]=nx"", —[x]=1
dx[ ] dx[ ]

6 Sum or Difference Rule

i[uiv]zu'iv’
dx

7 Quotient Rule

i u wu'—uwv
dx| v v?

i[u”] =nu"'u’

8 General Power Rule
dx
d .
—[sinx] =cosx
dx
d .
d—[cosx] =-—sinx
9 Derivatives of Trigonometric Functions X

i[tanx] =sec’ x
dx

i[cotx] =—csc’ x
ax
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d
—[secx]=secxtanx
dx

d
—[cscx]=—cscxcotx
ax

Derivatives of Trigonometric Functions

i[sinu] =(cosu)u’
dx

i[cosu] =—(sinu)u’
dx

i[tanu] =(sec’ u)u’
dx

10
(u be differentiable functions of x) i[cotu] — (escul
dx
d
—[secu] =(secutanu)u’
dx
d
—[cscu]=—(cscucotu)u’
dx
d 1
—Jarcsinx]=
dx 1-x°
d 1
—][arccosx|=-
dx 1-x°
d
o _ _ —[arctanx]= -
1 Derivatives of Inverse Trigonometric dx 1+x
Functions i[arccotx]——
dx 1+x°
d 1
—[arcsecx]|=———
dx x\x* -1
d 1
—[arcesex]|=———
dx x\x* -1
d ’
—[arcsinu] =
dx 1-u°
d ’
—[arccosu] =
dx 1-u°
d ’
Derivatives of Inverse Trigonometric E[arctanu] = 2
12 Functions (u be differentiable functions d L
—[arccotu] =
of x) dx[ ] o

i[arcsecu]—L
dx lulvu? -1
d _ !
—[arccscu] =

u
dx lulvu? -1
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13

Derivatives of Basic Hyperbolic
Trigonometric Functions
X —-X

—-e
2

X —X

e t+e

sinh(x) = €

cosh(x) =

i[sinh(x)] =cosh(x)

dx

i[cosh(x)] =sinh(x)

dx

i[tanh(x)] =sech’(x)

dx

i[sech(x)] =—sech(x)tanh(x)
dx

i[csch(x)] = —csch(x)coth(x)
dx

i[coth(x)] = —csch’(x)
dx

14

Derivatives of Inverse Hyperbolic
Trigonometric Functions

1

X +1

1

d. . 1,
E[smh (x)]=

i[cosh‘l(x)] =
dx x> -1

1

i[sech_1 (X)] = _—1
dx xvV1—x

-1

| x|V1+x°
1

2

d g
E[tanh (x)]= 1

d A
a[csch (x)]=

d Sy
E[coth (x)]—1

2

15

Derivatives of Exponential and
Logarithmic Functions

d X X
—[e’]=e
dx[ ]

i[Inx]zl
dax X

d X1 _ X
a[a ]=(Ina)a

i“o X]_L
dx & ~ (Ina)x

16

Basic Differentiation Rules for
Elementary Functions
(u & v be differentiable functions of x)
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!

d
Y _
dx[ g, U] (Ina)u

%[a”] =(Ina)a"u’

3) Hyperbolic functions are analogs of the circular trigonometric functions, but for a hyperbola. They

are extensively used in various areas of mathematics, including algebra, calculus, and complex

analysis. Here are the basic hyperbolic functions along with their definitions:

1 Hyperbolic Sine (sinhx ) sinhx:e ¢
. . e +e”
2 Hyperbolic Cosine (coshx) coshx=————
inh e —e”
3 Hyperbolic Tangent (tanhx) tanhx = Sinix _ -
coshx e +e™
. 1 2
4 Hyperbolic Cosecant (csch x) csch x =— =——
sinhx e*—e
. 1 2
5 Hyperbolic Secant (sech x) sech x = =——
coshx e*+e
coshx e*+e™”
6 Hyperbolic Cotangent ( cothx ) cothx = =

sinhx e*—e™”

4) List of antiderivative Formulas: covering a wider range of functions. These include basic functions,
exponential and logarithmic functions, trigonometric functions, and some of their inverses

Functions Antiderivative Formulas:
1 Constant Function Iadx:ax+C
Xn+1
2 Power Function Ix”dx: +C (n#-1)
n+1
3 Exponential Function Iexdx=ex +C
X aX
4 General Exponential Function Ia dx = in( )+C (@>0,a#1)
n(a
. 1
5 Natural Logarithm I—dx:ln|x|+C
X
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6 Sine Functions Jsin(x)dx:—cos(x)+c

7 Cosine Functions Icos(x)dx:sin(x)+c

8 Tangent Functions Itan(x)dx:—ln | cos(x)|+C

9 Cotangent (cot) Functions Icot(x)dx =In|sin(x)|+C

10 Secant (sec) Functions Isec(x)dx =In|sec(x)+ tan(x)|+C
11 Cosecant (csc) Functions Icsc(x)dx =—In|csc(x)+ cot(x) | +C
12 | Inverse Sine (arcsin) Functions _[ 1iX2 dx =sin"(x)+C

13 Inverse Tangent (arctan) Functions Ilsz dx =tan'(x)+C

14 sinh (Hyperbolic Sine) Functions Isinh(x)dx:cosh(x)+c

15 cosh (Hyperbolic Cosine) Functions Icosh(x)dx:sinh(x)+C

16 Integral of sec’ Jsecz(x)dx =tan(x)+C

17 | Integral of csc® ICSCZ(X)dX =—cot(x)+C

18 Integral of sec(x)tan(x) _[sec(x)tan(x)dX:sec(x)-l-C
19 Integral of csc(x)cot(x) Icsc(x)cot(x)dx = —csc(x) +C
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0-8. Find Derivatives (Preview)

Example: Solve all

32

1) Find the derivative of the function f(x)=7.(Constant Rule)

d
- Using the constant rule, which states d—[c] =0
X

A
- f(X)—dX[7] 0

2) Find the derivative of the function f(x)=5x". (Constant Multiple Rule)

d
- Using the constant multiple rule, which states —[cu]=cu’
x

- f(x) =i[5x3] = 5-i[x3] =5-3x* =15x°
dx ax

3) Find the derivative of the function f(x) = x’sin(x). (Product Rule)

d
Using the product rule, which states —[uv]=uv' +vu'’
X

- u=x>, v=sin(x)
- u'=2x, v'=cos(x)

F'(x)=(x*)'sin(x) + x*(sin(x)) = 2xsin(x) + x* cos(x)

4) Find the derivative of the function f(x)=sin(3x). (Chain Rule)
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d
Using the chain rule, which states d—[f(u)] = f'(u)’
X

flu)=sin(u), u=3x

f'(u)=cos(u), u'=3

f'(x) =cos(3x)-3=3cos(3x)

5) Find the derivative of the function f(x)=x". ((Simple) Power Rule)

d -
- Using the power rule, which states d—[x"] =nx""
X

: f'(x)=:—xtx51=5x“

6) Find the derivative of the function f(x)=x> —4x+7.(Sum or Difference Rule)

d
- Using the sum or difference rule, which states d—[u +v]=u'tVv
X

’ d 3 d d 2 2
- i) =—[x°]—-—[-4x]+—[7] =3x* —4+0=3x" -4
f(x) dx[ ] dx[ ] dx[]

2

7) Find the derivative of the function f(x)=

. (Quotient Rule)
sin(x)

. . ) diu| vu—-u/
Using the quotient rule, which states d_ — =
x| v

v
- u=x>, v=sin(x)
- u'=2x, v'=cos(x)

sin(x)-2x —x* - cos(x) _ 2xsin(x)— x° cos(x)

- fix)=

sin’(x) sin’(x)
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8) Find the derivative of the function f(x)=(3x’ +2)*. (General Power Rule)

d -
Using the general power rule, which states d—[u”] =nu"u
X

- u=3x"+2, u =6x

- n=4

f'(x)=4(33x* +2)* -6x=24x(3x*> +2)°

9) Find the derivative of the function f(x)=tan(x). (Derivatives of Trigonometric Functions)

d
- Using the derivative rule for the tangent function, which states d—[tan(x)] =sec’(x)
X

- =L tan(x)] = sect(x)
dx

10) Find the derivative of the function f(x)=sin(x). (Derivative of sin(x))

d
- Using the derivative rule for the sine function, which states d—[sin(x)] = cos(x)
X

£ =L [sin(x)] = cos(x)
dx

11) Find the derivative of the function f(x)=cos(x) . (Derivative of cos(x))

d .
- Using the derivative rule for the cosine function, which states d—[cos(x)] =—sin(x)
X

- £ ="L1cos(x)] = —sin(x)
dx
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12) Find the derivative of the function f(x)=tan(2x). (Derivative of tan(x))

d ,
- Using the derivative rule for the tangent function, which states d—[tan(u)] = secz(u) -u
X

- f'(x)= i[tan(2x)] =sec’(2x)-2
dx

13) Find the derivative of the function f(x)=cot(x). (Derivative of cot(x))

d
- Using the derivative rule for the cotangent function, which states d—[cot(x)] =—csc’(x)
X

- 0= Lcot()] = —cs(x)
dx

14) Find the derivative of the function f(x)=sec(x). (Derivative of sec(x))

d
- Using the derivative rule for the secant function, which states d—[sec(x)] =sec(x)tan(x)
X

- f'(x)= i[sec(x)] =sec(x)tan(x)
dx

15) Find the derivative of the function f(x)=csc(x). (Derivative of csc(x))

d
- Using the derivative rule for the cosecant function, which states d—[csc(x)] =—csc(x)cot(x)
X

- fix)= i[CSC(X)] = —csc(x)cot(x)
dx
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16) Find the derivative of the function f(x)=sin(3x” +2x). (Derivative of sin(u) where uis a
function of x )

d_ . ,
- Using the chain rule and the derivative of sine, which states d—[sm(u)] = (cos(u))u
X

- U=3x"+2x,u =6x+2

- f'(x) =cos(3x* +2x)-(6x +2) = (6x +2)cos(3x” +2x)

17) Find the derivative of the function f(x)=cos(x’ —x). (Derivative of cos(u) where uis a
function of x )

d . ,
- Using the chain rule and the derivative of cosine, which states d—[cos(u)] =—(sin(u))u
x

- u=x"-x,u =3x*-1

- f'(x)==sin(x’> = x)-(3x* —=1) =—(3x> =1)sin(x’ — x)

18) Find the derivative of the function f(x)=tan(2x’ —3x). (Derivative of tan(u) where uisa
function of x )

d :
- Using the chain rule and the derivative of tangent, which states d—[tan(u)] =(sec’(u))u
X

- u=2x"-3x,u =4x-3

- f'(x)=sec’(2x* —3x)-(4x —3) = (4x —3)sec’(2x* —3x)

19) Find the derivative of the function f(x)=cot(4x> + x*) . (Derivative of cot(u) where uis a
function of x )

d :
- Using the chain rule and the derivative of cotangent, which states d—[cot(u)] =—(csc*(u))u
X
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- u=4x>+x*, U =12x* +2x

- fl(X)=—csc?(4x® +x°) - (12x* +2x) =—(12x* + 2x)csc’(4x° + x°)

20) Find the derivative of the function f(x)=sec(3x” + x) . (Derivative of sec(u) where uis a
function of x )

d
- Using the chain rule and the derivative of secant, which states d—[sec(u)] =(sec(u)tan(u))u’
X

- u=3x"+x,u =6x+1

- f'(x) =sec(3x” + x)tan(3x* + x)- (6x + 1) = (6x + 1)sec(3x* + x)tan(3x” + x)

21) Find the derivative of the function f(x)=csc(x’ +2x). (Derivative of csc(u) where uisa
function of x )

d
- Using the chain rule and the derivative of cosecant, which states d—[csc(u)] = —(csc(u)cot(u))u’
X

- u=x"+2x, U =2x+2

- f'(x) =—csc(x® +2x)cot(x* +2x)- (2x +2) = —(2x +2)csc(x” + 2x)cot(x* + 2x)

22) Find the derivative of the function f(x)=sinh(x). (Derivative of sinh(x))

d . .
- Using the derivative rule for the hyperbolic sine function, which states d—[smh(x)] =cosh(x)
x

- f'(x)= i[sinh(x)] =cosh(x)
dx
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23) Find the derivative of the function f(x)=cosh(x). (Derivative of cosh(x))

d .
- Using the derivative rule for the hyperbolic cosine function, which states d—[cosh(x)] =sinh(x)
x

- f'(x)= i[cosh(x)] =sinh(x)
dx

24) Find the derivative of the function f(x)=tanh(x). (Derivative of tanh(x))

d
- Using the derivative rule for the hyperbolic tangent function, which states d—[tanh(x)] =sech’(x)
X

- fllx)= i[tanh(x)] =sech’(x)
dx

25) Find the derivative of the function f(x)=sech(x). (Derivative of sech(x))

- Using the derivative rule for the hyperbolic secant function, which states

i[sech(x)] =—sech(x)tanh(x)
dx

- f'(x)= i[sech(x)] =—sech(x)tanh(x)
dx

26) Find the derivative of the function f(x)=csch(x). (Derivative of csch(x))

- Using the derivative rule for the hyperbolic cosecant function, which states

i[csch(x)] =—csch(x)coth(x)
dx

- f'(x)= i[csch(x)] = —csch(x)coth(x)
dx
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27) Find the derivative of the function f(x)=coth(x). (Derivative of coth(x))

- Using the derivative rule for the hyperbolic cotangent function, which states

i[coth(x)] = —csch’(x)
dx

- flx)= i[coth(x)] =—csch’(x)
dx

28) Find the derivative of the function f(x)=sinh *(x). (Derivative of sinh™*(x))

- Using the derivative rule for the inverse hyperbolic sine function, which states

i[sinh‘l(x)] =
dx x*+1

1

X +1

] _i . -1 —
- f(X)—dX[Smh (x)]

29) Find the derivative of the function f(x)=cosh*(x). (Derivative of cosh *(x))

- Using the derivative rule for the inverse hyperbolic cosine function, which states
1

2

d o
E[cosh (x)]= =

- P =L fcosh ()] =
dx x* -1

30) Find the derivative of the function f(x)=tanh'(x). (Derivative of tanh™*(x))

- Using the derivative rule for the inverse hyperbolic tangent function, which states
1

1—x*

%[tanh_1 (x)]=
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1
1-—x*

- P =Litanh )] =
dx

31) Find the derivative of the function f(x)=sech *(x). (Derivative of sech™(x))

- Using the derivative rule for the inverse hyperbolic secant function, which states
d _ -1

—[sech™(X)] = ———

dx xV1-x?

- 0 =Lsech ()] = ———
dx

xv1—x?

32) Find the derivative of the function f(x)= csch™'(x). (Derivative of csch™*(x))

- Using the derivative rule for the inverse hyperbolic cosecant function, which states

1
| x|NV1+x

d v
a[csch (x)]=

d -1
- f'(x)=—TIcsch™(x)]| = ———
e dx e v | x|V1+x

33) Find the derivative of the function f(x)=coth™(x). (Derivative of coth™*(x))

- Using the derivative rule for the inverse hyperbolic cotangent function, which states

d TN |
a[coth (x)]_1

2

[ _i -1 — 1
- fllx)= dx[coth (x)] 1

2

34) Find the derivative of the function f(x)=e”". (Derivative of e*)
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d
- Using the derivative rule for the exponential function, which states d—[e"] =e"
X

' _i X1 pX
- f(X)—dX[e] e

35) Find the derivative of the function f(x)=In(x). (Derivative of In(x))

d 1
- Using the derivative rule for the natural logarithm function, which states d—[ln(x)] ==
x X

=L np =1
- f=—lin(x)]=—

36) Find the derivative of the function f(x)=2". (Derivative of a*)

d
- Using the derivative rule for the exponential function with base a, which states d_[aX] =(Ina)a”
X

' _i X1— X
- f(X)—dX[Zl (In2)2

37) Find the derivative of the function f(x)=Ilog,(x) . (Derivative of log_(x))

- Using the derivative rule for the logarithmic function with base a, which states

d 1
alloga(X)]— (inalx

1

iy d _
- f(X)—dX[|0g2(X)] (n2)x

38) Find the derivative of the function f(x)=(3x" +2)°. (Derivative of u")
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d -
- Using the general power rule, which states d—[u”] =nu"u
X

- u=3x"+2, u =6x

- f(x)=5(3x" +2)" -6x =30x(3x* +2)°

39) Find the derivative of the function f(x)=|3x —4|. (Derivative of |u])

d u
- Using the rule for the derivative of the absolute value function, which states —[|u|]=—Uu’

lul
where u#0
- u=3x—-4,u'=3
3x—4 .3=3(3x—4)
|3x—4] |3x—4|

- fix)=

40) Find the derivative of the function f(x)=In(2x> +5). (Derivative of In(u))

!

d u
- Using the rule for the derivative of the natural logarithm function, which states d—[ln(u)] =—
X u

- Uu=2x+5, U =6x

6x°
2x° +5

- fix)=

41) Find the derivative of the function f(x)= G (Derivative of e“)

d
- Using the rule for the derivative of the exponential function, which states d—[e”] =e'u’
X

- u=4x*, u' =8x

- fx)=e" -8x=8xe""
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0-9. Find Antiderivatives (Preview)

Example: Solve all

1) Find the antiderivative of .[de .

- Using the antiderivative formula for a constant function, Iadx =ax+C

2) Find the antiderivative of jx3 dx.

n+1

+C where n#-1

- Using the power rule for antiderivatives, Ix” dx = 1
n+

3+1 4

ngdx: X _tc=%+c
3+1 4

3) Find the antiderivative of Ie" dx.

- Using the antiderivative formula for the exponential function, .[ex dx=e"+C

4) Find the antiderivative of ISX dx.

X

a
- Using the antiderivative formula for the general exponential function, Iax dx = In(a) + C where
n(a
a>0,a=1
3X
- I3X dx = +C

In(3)
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. N 1
5) Find the antiderivative of I—dx .
X

1
- Using the antiderivative formula for the natural logarithm, I—dx =In|x|+C
X

6) Find the antiderivative of Isin(x)dx .

- Using the antiderivative formula for the sine function, Isin(x)dx =—cos(x)+C

7) Find the antiderivative of J-cos(x)dx .

- Using the antiderivative formula for the cosine function, J.cos(x)dx =sin(x)+C

8) Find the antiderivative of Itan(x)dx .

- Using the antiderivative formula for the tangent function, J.ta n(x)dx =—In|cos(x)|+C,

9) Find the antiderivative of Icot(x)dx .

- Using the antiderivative formula for the cotangent function, Icot(x)dx =In|sin(x)|+C
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10) Find the antiderivative of Isec(x)dx .

- Using the antiderivative formula for the secant function, Isec(x)dx =In|sec(x)+ tan(x)|+C

11) Find the antiderivative of J.csc(x)dx .

- Using the antiderivative formula for the cosecant function, J.csc(x)dx =—In|csc(x)+ cot(x)|+C

1
12) Find the antiderivative of | ———dlx.
J7—

- Using the antiderivative formula for the inverse sine function, dx =sin" (x)+C

f;

1

1+x2dx'

13) Find the antiderivative of I

1

+ x*

- Using the antiderivative formula for the inverse tangent function, I 1 dx=tan™" (x)+C

14) Find the antiderivative of jsinh(x)dx .

- Using the antiderivative formula for the hyperbolic sine function, Isinh(x)dx =cosh(x)+C
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15) Find the antiderivative of Icosh(x)dx .

- Using the antiderivative formula for the hyperbolic cosine function, Icosh(x)dx =sinh(x)+C

16) Find the antiderivative of J.secz (x)dx.

- Using the antiderivative formula for the integral of sec’(x), Isecz(x)dx =tan(x)+C

17) Find the antiderivative of jcscz(x)dx .

- Using the antiderivative formula for the integral of csc(x), Icscz (x)dx =—cot(x)+C

18) Find the antiderivative of Isec(x)tan(x)dx .

- Using the antiderivative formula for the integral of sec(x)tan(x), Isec(x)tan(x)dx =sec(x)+C

19) Find the antiderivative of Icsc(x)cot(x)dx .

- Using the antiderivative formula for the integral of csc(x)cot(x), jcsc(x)cot(x)dx =—csc(x)+C
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1-1. Introduction to Limits (Point Limits)

The concept of limits is foundational in calculus and involves approaching a particular point
on the function.

A limit describes the behavior of a function as it approaches a certain value (x-value),
regardless of what the function's value is exactly at that point.

This concept is crucial for dealing with situations where the function becomes difficult or
impossible to evaluate directly at that point due to discontinuities or undefined expressions.

A point limit is specifically the value that a function approaches as the input (or x-value)
approaches a particular point. It's expressed as:

lim f(x)=L

This notation means that as x gets closer and closer to a, f(x) gets arbitrarily close to L.

Formulas:

- Definition of a Limit: lim f(x) =L means for every € >0, there existsa & >0 such that if
X—>a

O<|x—al<o,then | f(x)—Ll<e.

- One-sided Limits:

o Right-hand limit: lim f(x)=L
x—a*

o Left-hand limit: lim f(x)=L

X—a
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1) Calculate Iirr;(3x +1).

- Solve Directly substitute x =2 into the function.

- Iirr;(3x+1)=3(2)+1:7

. Sinx
2) Find lim——.
x—0 X

- Solve This limit is a standard limit in calculus and equals 1. It demonstrates that as x approaches
0, the ratio of sinx to x approaches 1, despite the function being undefined at x=0.

3) Evaluate the limit: lim(2x+1).

x—3

- Tofind the limit as x approaches 3, substitute 3 into the function:2(3)+1=6+1=7

- Therefore, lim2x+1)=7.
x—3

2
x =1
4) Find the limit: lim .
x>0 x—1

. - (x+1)(x-1)
- Factoring the numerator, we get: lim———
x—0 x—-1

- The x—1 terms cancel out, giving:lim(x+1)=0+1=1
x—0
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1-2. Evaluating Limits Using Direct Substitution

Direct substitution is a straightforward method for evaluating limits in calculus.

It involves substituting the point at which the limit is taken directly into the function,
assuming the function is continuous at that point.

This method is particularly useful and efficient when the function does not exhibit (DNE) any

. . .0 0
indeterminate forms like — or —.
o0

Steps for Using Direct Substitution
1. Substitute the Limit Point into the Function:

- Plug the value x =g into the function f(x) directly.

2. Evaluate the Function:

- If the function evaluates to a finite number, that is the limit.

- Ifit results in an undefined expression or indeterminate form, alternative methods like factoring,
rationalizing, or L'Hopital's rule may be required.

When to Use Direct Substitution

- Function is Continuous at the Point: If f is known to be continuous at x =a, then lim f(x) = f(a) .
X—>a

- No Indeterminate Forms are Encountered: If plugging in x =a gives a definite value (not forms like
0/0 or oo/ ®).

Significance

- Direct substitution is often the first method tried in limit calculations due to its simplicity and quick
application.

- Itis a fundamental tool for assessing the behavior of functions as they approach particular points.
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Applications

- Mathematics Education: Teaching basic calculus concepts and introducing limit calculations.

- Engineering and Physics: Quick checks for continuous behavior in equations modeling physical
phenomena.

- Economics: Evaluating economic models at specific points for analysis and forecasting.

Tips for Effective Application

- Always verify the continuity of the function at the point of interest before using direct substitution.
- Be aware of the function’s domain to avoid undefined behavior.

- If direct substitution results in an indeterminate form, consider other techniques for evaluating the
limit.

Examples:

51

1) Calculate Iirr;(2x+ 1):

- Step 1: Substitute the Limit Point into the Function f(x)=2x+1
Substitute x=3: f(3)=2(3)+1=7

- Step 2: Evaluate the Function
The function evaluates directly to 7, hence: lim(2x+1)=7
x—3
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o NX+T4-2
2) Evaluate the limit: lim——— .

x—0 X

Direct substitution gives which is indeterminate 0/0.

, o o (Wx+4-2)Wx+4+2)
To resolve this, rationalize the numerator: lim

x>0 x(Vx+4+2)

X
- This simplifies to: IMm————— =lim———
Ox(VX+4+2) 0x+4+2
1 1

Now direct substitution yields:

Jora+2 4

L ANX X —x
3) Determine lim—— .

X—>0 X

- At infinity, direct substitution does not work directly, and we need to manipulate the expression.

/ 1
X 1+——x
v x

,/x2(1+1)—x
;N X

- Factor out X from the square root and simplify: = lim
X—>0 X
. 1
=lim(,/1+—-1)
X—>0 X

1
- Direct substitution now yields: as x >, ——0

X
_ J1+0-1=0

=lim

X—>0

X
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1-3. Simplifying Functions Through Factoring for Substitution

Simplifying functions through factoring is a powerful technique used in calculus to make limit
evaluations more straightforward, especially when direct substitution results in an

indeterminate form like %

Factoring allows us to cancel out terms in the numerator and denominator, which may
prevent direct evaluation but become resolvable after simplification.

The process generally involves

1. Identifying common factors in the numerator and the denominator.
2. Factoring out these common elements.

3. Simplifying the expression by canceling out the common factors.

4. Substituting the limit point into the simplified function, if now possible.

This approach is particularly useful in preparing a function for limit evaluation using
substitution, allowing for clearer insights into the function’s behavior near the point of interest.

Formulas:

- Factoring Quadratic Expressions: For a quadratic equation of the form ax” + bx + ¢ , factorization
involves finding two numbers that multiply to acand addto b.

- Difference of Squares:

- a*=b’=(a-b)a+b)

- Sum/Difference of Cubes:

- a*+b*=(a+b)(a® —ab+b?)

- a*—b’=(a-b)(a* +ab+b*)
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Examples:

2

. X
1) Evaluate lim
x=2 x—2

XX =4 (x=2)(x+2)
X—2 X—2

- Factor the numerator using the difference of squares:

- Cancel the common factor of x —2, simplifyingto x+2 (for x #2): lim(x+2)=4
x—2

- Thelimitis 4.

x> +1

2) Find lim
x>-1 x+1

X*+1  (x+1)(x* —x+1)
x+1 x+1

- Factor the numerator using the sum of cubes:

- Cancelthe x+1 term: lim (x> —x+1)=(-1) - (-1)+1=3
x—>=1

- Thelimitis 3.

, x*—16
3) Calculate lim———— .
x=4 x° —8x+16

+4)(x—4 +4 8
- Both the numerator and denominator can be factored: lim (x )X ) =lim X =—
x4 (x —4)(x—4) ~>4+x—-4 0

- However, since the denominator approaches 0 as x approaches 4, the limit does not exist due to a
division by zero.
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oo 1
4) Find lim—
x—0 x

1
- As x approaches 0, the value of — grows without bound.
X

- Therefore, the limit does not exist because it approaches infinity.

5) Find lim log(x)
x—0"

- The natural logarithm of x as x approaches 0 from the right-hand side goes to negative infinity,
since the logarithm of values between 0 and 1 is negative and decreases without bound as x
approaches 0.

- As x — 0" (approaching from the right), the logarithm function log(x) approaches —.

- limlog(x)=—o
x—0"

-2
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1-4. Limit Estimation Using Calculators (e.g., TI-84+)

Estimating limits using calculators like the TI-84+ can be particularly useful when dealing with
complex functions where analytical solutions are difficult to derive or verify.

Calculators can provide numerical approximations to limits by evaluating the function at
points increasingly close to the point of interest.

This method is not exact but offers practical insights into the behavior of the function near
the target value.

Procedure
- Use the table feature of the calculator.
- Set the table to increment at smaller intervals around the limit point.

- Observe the function values as they converge to a point.

Calculators typically compute these approximations by
1. Allowing you to input a function.
2. Enabling you to set a viewing window that zooms in on the area around the limit point.

3. Providing a "table" feature where you can view outputs of the function at values close to the
limit point.

4. Using a "trace" feature to visually determine the behavior as x-values approach the limit
point.

- It's important to remember that calculators can encounter rounding and computational limits, which
might affect the accuracy of the result, especially for very sensitive limits.

Formulas:

There are No specific formulas for estimating limits using calculators, but the process generally
involves:

- Setting the function into the calculator.

- Defining a range around the limit point.

- Observing the output values as the input approaches the limit point.
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. . sinx
1) Estimate |im—— using a TI-84+.
x—0 X

. sinx
Enter the function
X

into the "Y=" menu.

Set the viewing window with x values close to 0 (e.g., —0.1 to 0.1).

Use the table feature to evaluate the function at x =—0.01,—-0.001,0.001,0.01 .

Observe that the function values approach 1 as x gets closer to 0 from both sides.

2

. X .
2) Estimate lim using a TI-84+.
x>l x—1
x*—1
- Input into the calculator.
x-1

- Seta window around x =1, perhaps 0.9 to 1.1.
- Open the table and examine values around x=1.

- The values around x =1 will indicate that the function approaches 2, which aligns with the
algebraic evaluation after factoring and simplifying (x +1).

2

. . X
3) Estimate |lim
x—2 X_2

using a calculator's table feature.

- Set up the table feature to increment values of x around 2 (for example, 1.9, 1.99, 1.999 2.001,
2.01, 2.1) and observe the y values.

- The value should approach 4 as x approaches 2.




eSpyMath AP Calculus AB/BC Textbook 58

1-5. Graphical Limit Estimation and Visualization

Graphical estimation of limits involves analyzing the behavior of a function as it approaches a
certain point from the plot or graph of the function.

This method is particularly useful for visual learners and can provide intuitive insights into the
behavior of functions near points of interest, including points of discontinuity or where the
function does not have an explicit value.

Procedure
- Plot the graph of the function around the point of interest.

- Observe the behavior of the function as the input values get closer to the target point from both
directions.

The key to graphical limit estimation is understanding that:

- If the function approaches a particular y-value as x approaches a certain value from the left and right,
then the limit exists at that point.

- If the function approaches different y-values from the left and the right, the limit does not exist at
that point (demonstrating a "jump" discontinuity).

- If the function grows without bound (either positively or negatively) as x approaches a certain value,
the limit is considered to be infinite.

Using graphing tools, either software like Desmos and GeoGebra or graphing calculators, can aid
in this visualization by providing a clear depiction of the function and its limits.

Formulas:

Graphical limit estimation does not involve specific Formulas: but focuses on interpreting the
behavior of the function's graph:

- Analyze how the y-values change as x-values approach the limit point from both the left (x > a™) and
right(x >a").

- Observe any vertical asymptotes where the function may approach infinity.
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1
1) Estimate the limit of f(x)=— as x — 0 graphically.
X

1
- Plot f(x)=—.
X
- Observe that as x approaches 0 from the left, the y-values decrease towards negative infinity. As x

approaches 0 from the right, the y-values increase towards positive infinity.

- The behavior indicates that the limit does not exist as x — 0 because the function approaches
different values from each direction.

x°—4
as x —>2.

2) Graphically estimate the limit of f(x)=

- Graph the function. Notice the hole at x =2 due to the common factor in the numerator and
denominator that can be canceled.

- After simplifying the function to x + 2, re-plot to confirm continuity except for the holeat x=2.

- By examining the graph near x =2, it can be seen that the function approaches 4.
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3) Graph the function f(x)=x> —4x and estimate |lim f(x).
X—2

- By plotting the graph, you would observe that as x approaches 2, f(x) approaches 0.

- Thus, Iirr;f(x):O.

1
4) Estimate |lim ——— by graphing.

x>-1x°+1

- The graph of — shows a horizontal asymptote as x approaches —1, and the y valueis 0.5.

x +1

- So, lim———=0.5.

x>-1x" +1
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1-6. Algebraic Manipulation and Properties of Limits

Algebraic manipulation in the context of limits involves rearranging and simplifying
expressions to make limit calculations more straightforward.

Understanding the properties of limits is essential for effectively applying these techniques, as
these properties allow the manipulation of limits in ways that are analogous to standard
algebraic operations.

The properties of limits provide a set of rules that help in the computation of limits, ensuring
that the limit of a combination of functions can often be determined from the limits of the
individual functions, provided those limits exist.

These properties are crucial when dealing with sums, products, quotients, and compositions
of functions.

Formulas:

Key properties of limits include:

Sum of Limits: lim(f(x)+ g(x))=lim f(x)+limg(x)

Product of Limits: lim(f(x)-g(x))=(lim f(x))-(limg(x))

£(x) lim f(x)
Quotient of Limits: lim——=22—— provided limg(x) =0
=oglx)  limg(x) e

Limit of a Constant Times a Function: lim(c- f(x)) =c-lim f(x)
X—>a X—>a

Power of a Limit: lim(f(x))" = (lim f(x))"
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1) Using algebraic manipulation and properties to compute lim(2x”> +5x —3).
x—3

lim(2x* +5x —3) =2limx* + 5limx —lim3
x—3 x—3

x—3 x—3
- Compute each limit: 2-9+5-3-3=18+15-3=30
- The limitis 30.

- Break the limit into simpler parts using the sum and constant multiple properties:

2

X
2) Find lim

-1 x+1

using algebraic manipulation.

x*—1 (x-1)(x+1)
x+1 x+1

Factorize and simplify the expression first:

Simplify (for x#—-1): x—1

Now, compute the limit: lim(x—-1)=-1-1=-2
x—>-1

The limitis —2.

2x+1

3) Compute |lim .
x=>43x —5

- Use the quotient rule, assuming the denominator isn't zero:

2x+1 I|m(2x+1) 9

_ x4

x>43x—5 |im(3x—5) 7

x—>4
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. (1
4) Evaluate limx- sm(—j .
x—0 X

(1
- Recognize that as x approaches O, sm[—j oscillates between -1 and 1, and x becomes very
X

small.

- The product of a very small number and a number that oscillates between -1 and 1 is also very
small.

- Therefore, the limitis 0.

VX =2
5) Evaluate the limit: lim .
x—=>4 ¥ _4

- To evaluate the limit lim , we can use the technique of multiplying by the conjugate to

x=>4 x—4

simplify the expression

Cx—2 x—2 x+2
lim =lim

x>4 x—4 x4 x—4 .\/;+2

- Simplifying the numerator: = le (f_;i()f/\/;;:j) = lem e :)(_\/4; +2)

. 1
- Cancel out the common factor x—4: =lim
ot \x 42
1 1 _

- Substitute x=4: = = _l
Ja+2 2+2 4

CoAx=-2 1
- So, lim =—.
=4 x—4 4
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1-7. Definition and Understanding of One-Sided Limits

One-sided limits are a crucial aspect of calculus that focuses on the behavior of a function as
the input approaches a particular point from only one side—either from the left or from the
right.

These limits are particularly useful for analyzing functions at points where the behavior is
different depending on the direction from which the point is approached.

- Left-Hand Limit: The limit of f(x) as x approaches a value a from the left, denoted as lim f(x).

- Right-Hand Limit: The limit of f(x) as x approaches a value a from the right, denoted as

lim f(x).

x—a*

The distinction between left-hand and right-hand limits is essential for understanding
discontinuities and determining whether the overall limit exists at a point. The overall limit
lim f(x) exists only if both the left-hand limit and the right-hand limit exist and are equal.
X—>a

Two-sided limits refer to the value a function approaches as the variable gets close to a particular
point from both directions (left and right). If the function approaches the same value from both sides,
the two-sided limit exists. This situation is mathematically denoted as lim f(x)=L.

X—>C

One-sided limits are concerned with the behavior of functions as the variable approaches a point
from one direction only, either from the left (x — ¢~ ) or from the right (x — ¢" ): from the right
(indicated as x — ¢ "), the limit is written as lim f(x) =L, and from the left (indicated asx — ¢" ), it's

x—c*
written as lim f(x)=L.
X—c
- The existence of limits is determined by the behavior of one-sided limits. A two-sided limit exists
only if both one-sided limits are equal; otherwise, the limit does not exist (DNE).

- Infinite limits occur when the function grows without bound as the variable approaches a
particular point. These are denoted as +00 or —o0, depending on the direction of the growth.
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Formulas:

- Left-Hand Limit: lim f(x)=L means that for every € >0, there exists a § >0 such that if x is within

X—a

O ofafromtheleft (a—J<x<a), then| f(x)—L|<e.

- Right-Hand Limit: lim f(x)=L follows a similar definition, but x approaches a from the right (

x—a*

a<x<a+od).

Examples:

1) Compute the left-hand and right-hand limits of f(x)= ﬁ as x —>0.
X

. X ) X
- Left-Hand Limit: lim —=lim—=-1
x—0" | X | x—=>0" —X

. X X
- Right-Hand Limit: lim —=lim —=1
x—0" | X | x—0" x

. X .
- Since the left-hand and right-hand limits are not equal, the overall limit I|mﬁ does not exist
x>0 x

(DNE).

2) Find lim (x> —4) and lim (x> —4).
x—2" x—2"

- Left-Hand Limit: lim (x> -4)=4-4=0

x—2"

- Right-Hand Limit: lim (x> —4)=4-4=0

x—2"

- Both limits are equal, so lim(x> —4)=0.
X—2
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3) Evaluate the left-hand limit lim (2x —5).

x—3"

- Direct substitution since it's a continuous function: lim(2x—5)=2(3)-5=1.
x—3"

2 :
1- ﬁ
0 1 '2/ 5 4 5 6

4) Evaluate the right-hand limit |lim In(x).

x—0"

- As x approaches 0 from the right, In(x) goes to negative infinity. So, the right-hand limit is —oo.

<

A4
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5) Compute the left-hand limit

. X' =4
lim
x—=2" X—2

- Factor and cancel to find lim
X—2"

(x+2)(x—=2)

X—2

AN

. After canceling, the left-hand limitis 2+2=4.

3 4
X
6) Compute the left-hand limit lim u
x—0" X
. xl —x
- As x approaches 0 from the left, |X|:(—x) .Thus, lim —=—=-1.
x=>0" X X
AN
1
N
T T T T T T T T T 7
-5 4 -3 -2 -1 1 2 3 4
i,
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1-8. Understanding and Applying the Concepts of Limits in Calculus

Limits are a fundamental concept in calculus, forming the basis for defining derivatives and
integrals.

Understanding limits involves grasping how a function behaves as its inputs approach a
specific value, regardless of whether the function is actually defined at that value. This is
essential for analyzing functions that are not continuous or have points of discontinuity.

The concept of a limit helps to:

- Understand instantaneous rates of change (derivatives).

Handle functions that are undefined or indeterminate at certain points.

Determine the behavior of sequences and series.

Deal with infinitesimally small quantities.

Limits can be approached from a graphical perspective, using numerical approximations, or
through symbolic manipulations. Each method offers unique insights and is useful in different
contexts.

Formulas:

- Basic Limit: lim f(x) =L signifies that as x approaches a, f(x) approaches L.
X—>a

- Squeeze Theorem: If g(x) < f(x) < h(x) forall x near a (except possibly at a) and
limg(x)=limh(x)=L, then lim f(x)=L.
X—>a X—a X—>a

) X
- L'Hopital's Rule: If Ilmm results in an indeterminate form like 0/0 or c© /o0, then

x—a g(x)
IimM=Iimf ()

x—a g(X) x—a g’(x)

, assuming the limits of the derivatives exist.
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1
1) Apply the Squeeze Theorem to find lim x* sin(=).
X

x—0

.1 1
- Use the inequalities —1<sin(=)<1: = — x> <x’sin(=) < x?
X X

1
- Since lim(—x’)=limx* =0, Iingxzsin(—)=0

x—0 x—0 X

A et . Sinx
2) Use L'Hbpital's Rule to evaluate lim——.
x>0 x

sinx

0
- Initially, at x=0 gives 6, an indeterminate form.

X

- Use L'Hopital's Rule IimM=|im f’(x) : “msmx =lim cosx =cos(0)=1
x—a g(X) x—)ag(x) x>0 x x>0 1

3) If f(x):l,what is lim f(x)?
X x—0"

- lim f(x) is +o0 because as x approaches 0 from the positive side, the function's value increases

x—0*

without bound.

= N W b O O
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4) Given f(x)= u , does Ilmf(x) exist?
X

- No, lim f(x) does not exist (DNE) because
x—0 3
- the left-hand limit (x > 07 ) is -1 2
A
- the right-hand limit (x - 0" )is 1 16
- They are not equal.
4 -3 -2 -1 0 1 2 3 4
B
=+
-2
-3

5) If f(x)= —3 determine I|m f(x) and I|m f(x).

- lim f(x) is 40 and Ilm f(x) is —o0, because as x approaches 3 from the right, the function goes
x—3"

to positive infinity, and from the left, it goes to negative infinity.

10

8

-8-7-6-5-4-3-2—1 2
-2

45678 910111213

-4

-6

- ) ] o
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1-9. Formal Limit Definition Based on Closeness

The epsilon-delta definition of a limit formalizes the concept of limits in calculus using
precise mathematical language.

This definition is used to prove whether a limit exists at a point according to how closely f(x)
approaches a specific value as x approaches a certain point.

The key idea is that for every small number ¢ (representing the distance around the limit L),
there exists a corresponding small number & (representing the distance around the point a)
such that whenever 0<|x—al< 9, it follows that | f(x)—L|<e.

Formulas:

- lim f(x) =L means that for every € >0,

there existsa & >0 such thatif 0<|x—a|<J, then | f(x)—L|<e.

Understand Concepts by Game:

Imagine you're playing a game where your goal is to get as close as possible to a target without
actually touching it. In math, when we say a function approaches a limit as gets close to a certain
value, we're talking about something similar. The function's values get closer and closer to some
number (the limit) as x approaches a specific point.

- Definition: The Formal Rules of the Game

- Function f: This is like the path you're walking on in our game.

- Limit L: This is the target spot you're trying to get close to.
- x approaches a : You're walking towards a specific point @ on your path.

- Forevery ¢ >0:Think of € as a challenge level in the game, where you're asked to get within a
certain distance of the target. No matter how small this distance is (as long as it's greater than
zero), you need to show you can meet the challenge.

- There exists a o > 0: This is your strategy for the challenge. Based on how tough the challenge is (
€), you decide how close you need to get to the point a (this closenessis O ) to ensure you're
within the target distance ( €) of the limit L.

- If 0<|x—a|< J: This means you're within your decided closeness to the point @, but not exactly
at a.
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- Then | f(x)—L|<e : If you're within that closeness, then you've succeeded in the challenge; the
function's value is within the target distance of the limit L.

Putting It Into Practice (hint: find matching positive €& & by | f(x)—Ll<e=|x—al<?d)

Examples:

1) Prove that limx* =9 using the epsilon-delta definition.
x—3

- Choose € >0.We need to find & >0 such thatif 0<|x—3|<J,then |x* -9 |<e.
- Notice that | x* —9|=| x+3| | x—3].
- Assume | x—3|<1 (which implies 2<x <4 and thus 5<x+3<7).

- Now, |x* =9|=|x+3||x-3<7|x-3].

- Set 5:min(1,§j.Then |x*-9|<7|x-3]<75<e.

2) Determine ¢ for Iirr;(3x—1):5 given ¢=0.1.

- We have |3x—5|< e whenever 0<|x—2|<¢ .

0.1
- Simplify |3x—5]=3|x—-2]|. We want 3|x—-2]<0.1, so |x—2l<?.

0.1
- Therefore, 6 =——.

3
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3) Let's say you're proving that as x gets close to 2, the function f(x)=x’ gets close to 4. Here's
how you'd use the epsilon-delta definition:

- Challenge Level ( €): Someone challenges you to show that you can get the function's value within,
say, 0.1 units of 4.

- Strategy (0 ): You figure out that if you choose x values within 0.05 units of 2, then f(x) will be
within 0.1 units of 4.

- Verification: You then check mathematically that whenever x is within 0.05 units of 2 (but not
exactly 2), f(x) (or x> in this case) is indeed within 0.1 units of 4. If this works out, you've met the
challenge according to the game's rules.

In essence, the epsilon-delta definition is a formal way to say, "No matter how close you want to get to

the target, | can find a way to get the function's values within that closeness by picking x values close

enough to a certain point." It's about proving that you can always meet the challenge of getting close
to the limit.

4) Prove that limx = 3 using the epsilon-delta definition of a limit.
x—3

- Forevery e >0, weneedtofinda 6 >0 suchthatif 0<|x—3|<J,then | x—-3|<e.

- Choosing 6 =¢ workssinceif 0<|x—3|< 0, then | x —3|<e.

5) Using the epsilon-delta definition, prove that lim(3x—4)=2.
X—2

- Forevery € >0, choose 0 =¢/3.

- If 0<|x—2|<0,then |3x—4-2|=3|x—2|< 30 =€, hence the limit is proven.
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. 1
6) Use the epsilon-delta definition to prove that im——=1.
x>0 + x

1
For every € >0, choose 6 =min 1,L Af0<|x|< ), then |
1 11+ x

+e€
Since |x|<o0 <1, |1+x[|>1.

| x|

Thus,
|1+ x|

<| x [< & L€, establishing the proof.

Using epsilon-delta, prove that limc =c for any constant ¢ and real number g.

X—>a
Forevery e >0,let o =«¢.
Thenif 0<|x—al|<d, | f(x)—L|=lc—c|=0<e.

Since 0 is always less than €, the limit is proven.
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Chapter 11. Infinite Sequences and Series (AP BC Only)
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11-1. Defining Convergent and Divergent Infinite Series

An infinite series is the sum of the terms of an infinite sequence. It can be written in the form:
2.4,
n=1

where a, represents the terms of the series.

Convergence of an infinite series occurs when the sum of its terms approaches a finite limit as the

number of terms increases. Conversely, a series is divergent if the sum does not approach a finite
limit.

Definitions:

1. Convergent Series: An infinite series ZGn is said to be convergent if the sequence of partial sums S,

n=1

approaches a finite limit L as N approaches infinity:

N
limS, =lim ZG,, =L
N—o N—® wry

If this limit exists and is finite, the series converges to L.

2. Divergent Series: An infinite series ZGn is divergent if the sequence of partial sums S, does not
n=1

approach a finite limit as N approaches infinity:

lim S, = o0 or does not exist

N—w
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Tests for Convergence and Divergence

Several tests can determine whether a series is convergent or divergent.

1. n-th Term Test for Divergence: If the limit of a, as n approaches infinity is not zero, then the series

Zan is divergent: lima, #0= ZG,, diverges
n=1 n—e n=1

2. Geometric Series Test: A geometric series ZGr" converges if [r|<1 and divergesif |r|>1.The sum
n=0

o0
. _— z a
ofa convergent geometrlc series Is: ar" i — fOF | r |< 1
_ —r
n=0

3. p-Series Test: A p-series Z—p converges if p>1 and divergesif p<1:
n=1 n

= 1
D — convergesifp>1
n=1 np

Zip divergesif p<1

n=1

4. Comparison Test: Compare the given series with a known series:
- If0<a,<b, forall n and an converges, then Zan also converges.

- Ifa,2b,>0 forall n and an diverges, then Zan also diverges.

5. Integral Test: If a, = f(n) where f(x) is a positive, continuous, and decreasing function for x > 1,

then the series Zan converges if and only if the improper integral Jmf(x)dx converges.
1
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Examples:

1) Geometric Series

0 n
- Determine if the series Z[—J is convergent or divergent.
n=0

1 1
- This is a geometric series with a=1 and r :§. Since |r |=§ <1, the series converges.

- The sum is:

2) p-Series

- Determine if the series 2—2 is convergent or divergent.

n=1

- Thisis a p-series with p=2.

- Since p >1, the series converges.

3) Comparison Test

- Determine if the series Z is convergent or divergent.

2

o hn +1
o1
- Compare — with —-.
n“+1 n
Si <1 dil ( i ith p=2), by th i tti
- Since —- an —- converges (p-series wi =2), by the comparison test,
n’+1 n’ ~n’ ~n*+1

also converges.
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4) Integral Test

Determine if the series Z

is convergent or divergent.
= nin(n)

1
- Let f(x)= .
xIn(x)
- Evaluate the improper integral: ) dx
2 xInx

1 o 1 w ]
- Use substitution u=Inx, du=—dx: I dx:I —du=[Inu]
X 2 xlnx In2

In2
- The integral diverges because Inu approaches infinity as approaches infinity.

- H ,th i
ence, the series ;nln(n)

diverges.
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11-2. Working with Geometric Series

A geometric series is a series where each term is a constant multiple (called the common ratio) of the
previous term. Geometric series can be either finite or infinite, and their properties depend heavily on
the value of the common ratio.

A geometric series can be expressed as:

ZGr":a+ar+ar2+ar3+---
n=0

where a is the first term and ris the common ratio.

Formulas:
1. Sum of an Infinite Geometric Series:

An infinite geometric series converges if the absolute value of the common ratio is less than 1 (|r] < 1).
The sum S of an infinite geometric series is given by:

5=—1a for|ri<1

If |r|=1, the series diverges.

2. Sum of a Finite Geometric Series:

The sum S of the first n terms of a finite geometric series is given by:

forr=1

Examples:

1) Sum of an Infinite Geometric Series

0 1 n
- Find the sum of the infinite geometric series 24(—j .
n=0

- ldentify the first term a and the commonratio r: a=4, r :§
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a
- Since | r|<1, the series converges. The sumis: S :1— = =

2) Sum of a Finite Geometric Series

- Find the sum of the first 5 terms of the geometric series 3+6+12+24 +---.

- ldentify the first term a and the commonratio r:a=3, r=2

1-r" _1-2°
- Use the formula for the sum of the first n terms: S, =a =3 =93
1-r 1-2
3) Convergence of an Infinite Geometric Series
- A .
- Determine if the series Z _E converges or diverges.
n=0
. : . 2
- Identify the first term a and the commonratio r: a=1, r= _E
. . , a 1 5
- Since |r |<1, the series converges. The sumiis: S = 1 = = 7

4) Divergence of an Infinite Geometric Series

- Determine if the series ZS(Z)” converges or diverges.
n=0

- ldentify the first term a and the commonratio r: a=5, r=2

- Since |r [>1, the series diverges.
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11-3. The nth Term Test for Divergence

The n th Term Test for Divergence is a simple yet powerful test used to determine whether an infinite
series diverges. This test is based on the behavior of the terms of the series as n approaches infinity.

If the limit of the n th term of the series does not approach zero, then the series diverges. However, if
the limit of the nth term does approach zero, the test is inconclusive, and other tests must be applied
to determine convergence or divergence.

Formulas:

n th Term Test for Divergence:

o0
For a series ZGn ,
n=1

- if: lima,#0 or lima, does not exist

n— n—o0

- then the series ZGn diverges.

n=1

Examples:

1) Divergent Series

S n+1
- Determine if the series Z— diverges.

n=1

+1 1
- Evaluate the limit of the nth term as n approaches infinity: @, =——=1+—

n n

n—o n

Iim(1+1J:1+0:1¢0

: o on+l o
- Since lima, #0, the series Z— diverges.

n—»o
n=1
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2) Inconclusive Test

Determine if the series Z— converges or diverges using the n th Term Test for Divergence.
n=1 n

1
Evaluate the limit of the nth term as n approaches infinity: a, =—
n

Iimlzo

n—w N

Since lima, =0, the nth Term Test for Divergence is inconclusive.

n—0

This series is known as the harmonic series, and it diverges, but we would need to use a different
test (such as the integral test) to establish this.

3) Convergent Series

Determine if the series 2—2 converges or diverges using the n th Term Test for Divergence.

n=1

1
Evaluate the limit of the nth term as n approaches infinity: a, =—

n

Iimizo

n—w N

Since lima, =0, the nth Term Test for Divergence is inconclusive.

n—0

To determine convergence, we can use the p-series test. Since this is a p-series with p=2>1, the
series converges.
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4) Series with Trigonometric Terms

] ) 1
Determine if the series ZSln(—j converges or diverges using the n th Term Test for Divergence.

n=1

(1
Evaluate the limit of the nth term as n approaches infinity: a, = sm(—}
n

lim sin(lj =sin(0)=0
n

n—o

Since lima, =0, the nth Term Test for Divergence is inconclusive.

n—0

- This means the test does not tell us whether the series converges or diverges.

Therefore, we cannot determine the convergence or divergence of the series using this test alone.
Other tests or methods would be needed to further analyze the series.
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11-4. Integral Test for Convergence

The Integral Test for Convergence is a powerful tool for determining the convergence or divergence of

an infinite series. This test is particularly useful when dealing with series whose terms are generated
by a positive, continuous, and decreasing function.

The Integral Test connects the convergence of an infinite series ZGn with the convergence of an
n=1

improper integral wa(x)dx , where f(x)=a, for x=n.

Theorem (Integral Test):

Let f(x) be a positive, continuous, and decreasing function for x >1, and let a, = f(n). Then the series

ZGn converges if and only if the improper integral wa(x)dx converges:
1

n=1

ZG,, converges :L f(x)dx converges

n=1

If the integral diverges, then the series also diverges.



eSpyMath AP Calculus AB/BC Textbook 290

Examples:

1) Convergence of a p-Series

Determine if the series 2—2 converges or diverges using the Integral Test.

n=1

- The given series is a p-series with p=2. We apply the Integral Test by evaluating the

o 1
corresponding improper integral: L —de
X

1 _ _ 1
- Find the antiderivative: I—zdx = JX Zdx=—x"'=-Z=
X

b
- Evaluate the improper integral: Lwide:Iim{—l} :|im(—l+1j:1
X

b—o X b—0 b

- Since the integral converges to 1, the series Z—Z converges.

n=1

2) Divergence of the Harmonic Series

Determine if the series Z— converges or diverges using the Integral Test.
n=1 n

- The given series is the harmonic series. We apply the Integral Test by evaluating the corresponding

. . »1
improper integral: .[ —dx
T x
. o 1
- Find the antiderivative: I—dX:InlxlzlnX
X

©] . . .
- Evaluate the improper integral: L —dx = Ilm[lnx]ll) = Ilm(lnb—lnl): limlnb=0o
X

b— b—o b—ow

- Since the integral diverges, the series Z— diverges.
n=1 n
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3) Series with a Non-Integer Power

Determine if the series 23—/2 converges or diverges using the Integral Test.

n=1

3
The given series is a p-series with p = E We apply the Integral Test by evaluating the

= 1
corresponding improper integral: I —r X
1 x
1 B B _
Find the antiderivative: J.T/ZdXZIX 3/2 dX:JX 3/2dX = =-2X vz _ _
X

b
© ] 2 2
Evaluate the improper integral: —dX:Iim{——} :|im[——+2j:2
.[1 X3/2 b—w ’X 1 b—w [b

Since the integral converges to 2, the series 23—/2 converges.

n=1

4) Series with a Logarithmic Term

Determine if the series z

converges or diverges using the Integral Test.
n=2 n(lnn)

2

o 1
We apply the Integral Test by evaluating the corresponding improper integral: > X )2
x(Inx
1 o 1 o 1
Use substitution u=Inx, du=—dx: I 2dx=J —du
X 2 x(Inx) In2
. o 1 1
Find the antiderivative: I—Zdu =——
u u
1 17 1 1) 1
Evaluatetheimproperintegral:I —du=lim| ——| =lim| ——+—|=—
In2 y b—>0 u n2 b—>w0 b |n2 |n2

1 [ee]
Since the integral converges to G' the series z
n

converges.
= n(lnn)

2

dx
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11-5. Harmonic Series and p-Series

The harmonic series and p-series are specific types of infinite series that have important implications
in calculus. Understanding these series helps in determining convergence and divergence using
various tests.

Harmonic Series:

The harmonic series is the series of the reciprocals of the natural numbers:

The harmonic series is divergent. This can be shown using the Integral Test or by comparing the
harmonic series to a known divergent series.

p-Series:

1
A p-series is a series of the form: Z—p where p is a positive constant.
n=1 n

- The p-series converges If p>1.

- The p-series diverges if p<1..

Theorems and Tests

1. p-Series Test:

> 1
Ifp>1,then Z—p converges.
n=1 n

— 1
If p<1,then Z—p diverges.
n

n=1

2. Integral Test:

To apply the Integral Test to the harmonic series or a p-series, evaluate the corresponding improper

. . = 1 . . o 1
integral. For a p-series Z—p, consider the integral: L —de
n X

n=1
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- If p>1,theintegral converges, and so does the series.

- If p<1,the integral diverges, and so does the series.

Examples:

293

1) Divergence of the Harmonic Series

o0

Determine if the harmonic series E — converges or diverges.
- n
n=1

o]
Apply the Integral Test by evaluating the corresponding improper integral: L —dx
X

. . 1
Find the antiderivative: I—dx =Ilnx
X

©1 . b . .
Evaluate the improper integral: L —dx=lim [Inx]1 = Ilm(lnb—lnl)z limlinb=o
X

b— b—w b—w

Since the integral diverges, the harmonic series Z— diverges.
n=1 n

2) Convergence of a p-Series with p =2

= 1
Determine if the series 2—2 converges or diverges.

n=1

- Apply the p-Series Test with p=2: Since p >1, the series converges.

o 1
- To confirm, apply the Integral Test by evaluating the corresponding improper integral: _L —ZdX
X

. o 1 1
- Find the antiderivative: I—de =——
X X

b
© 1 1 1
- Evaluate the improper integral: L —zdx:lljim{——:| :Lim(—g+1j=1
X —0 X 1 —>0

= 1
- Since the integral converges to 1, the series Z—Z converges.

n=1
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3) Divergence of a p-Series with p=1

Determine if the series z

n=1

— converges or diverges.

- Apply the p-Series Test with p=1.1: Since p >1, the series converges.

o 1
- To confirm, apply the Integral Test by evaluating the corresponding improper integral: L de
X"
1 x O 1
- Find the antiderivative: ITdX = =——x ' =—10x""
X -0.1 0.1

© 1 b
- Evaluate the improper integral: L —dx=lim [_10)(-0.1] =lim (—10b_0'1 + 10) =10
X

1 b—>w 1 bhow

- Since the integral converges to 10, the series ZT converges.

n=1
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11-6. Comparison Tests for Convergence

Comparison tests are powerful tools for determining the convergence or divergence of an infinite
series by comparing it to a series whose convergence properties are already known. There are two
main comparison tests: the Direct Comparison Test and the Limit Comparison Test.

1. Direct Comparison Test:

This test involves directly comparing the terms of two series.

Theorem: Let Zan and an be two series with positive terms.

If 0<a,<b, forall n=N (for some positive integer N ), and an converges, then Zan also

converges.

If 0<b,<a, foralln=N,and an diverges, then Zan also diverges.

N

. Limit Comparison Test:

This test involves taking the limit of the ratio of the terms of two series.

- Theorem: Let Zan and an be two series with positive terms. Suppose:
an
where ¢ is a positive finite constant.

- If an converges, then Zan also converges.

- If an diverges, then Zan also diverges.
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Examples:
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1) Direct Comparison Test

o0

Determine if the series

converges or diverges.
o h +1

1
> with —-. Since n*<n’ +1, we have:
n +1 n

Compare

1 Si
n+1 n?

1
The series Z_z is a convergent p-series with p=2>1.
n

1 1
< — , the series >

n+1 n n +1

1
By the Direct Comparison Test, since Z_z converges and 0<
n

also converges.

2) Limit Comparison Test

> S5n+1
- Determine if the seriesz 3 converges or diverges.
=N +2n
.. 5n 5
- Compare — ith —=—
n°+2n n° n
5n+1 5_'_1
3 5n+1)n’ 5n° +n’ n 540
- Calculate the limit: lim 2 +2”=I'm( 3 ) =i 3 =i n - _—-1
no 5 n>»5(n° +2n) n><5n°+10n e 10 540
” T

5
Since the limit is a positive finite constant, and Z_z is a convergent p-series with p=2>1, by
n

5n+1
n®+2n

the Limit Comparison Test, the series z also converges.




eSpyMath AP Calculus AB/BC Textbook

297

3) Direct Comparison Test with Divergence

o0
Determine if the series z converges or diverges.

2

n:1n _1
. 2n
- Compare — with —-.
n -1 n
2n 2n 2
- Since N> —1<n’ forall n>1, we have: 5 2— ==
nn-1 n" n

2
- The series Z— is a divergent harmonic series.
n

2 2 2n 2n
- By the Direct Comparison Test, since Z— diverges and —<— , the series Z > also
n n n -1 n° -1
diverges.

4) Limit Comparison Test with Divergence

o & n+in(n) ,
- Determine if the series Z—z converges or diverges.
n=1 n
n+in(n)  n 1
- Compare > with —=—.
n n° n
n+In(n)
S 2 . (n+Inn)n . n+lnn Inn
- Calculate the limit: lim —2 :|Im¥:|lm :I|m(1+— =1+0=1
n—oo n—oo n n—oo n n—oo n

n

1
Since the limit is a positive finite constant, and Z— is a divergent harmonic series, by the Limit
n

n+In(n
Comparison Test, the series Z#
n

also diverges.
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11-7. Alternating Series Test for Convergence

An alternating series is a series in which the terms alternate in sign. The Alternating Series Test, also
known as the Leibniz Test, is used to determine the convergence of such series.

A typical alternating series can be written in the form:

i(—l)”"lan or i(—l)”an

where @, are positive terms.

Theorem (Alternating Series Test)

The Alternating Series Test states that an alternating series Z(—l)”_lan converges if the following two

n=1
conditions are met:
1. The terms a, are decreasing: a,,, <a, forall n.
2. The terms a, approach zero: lima, =0.
n—0

Examples:

1) Alternating Harmonic Series

[e'e] _1 n-1
- Determine if the alternating harmonic series Z converges.
n=1
0 _1 n-1 1
- The given series is: Z( ) =1-—+——+
n=1 n 2
. . 1 1 -
- Check if the terms a, =— are decreasing: @,,, =——<—=a, (This is true for all n.)
n n+1l n
. 1
- Check if the terms a, approach zero: lim—=0
n—0 n
o [ n-1
- Since both conditions of the Alternating Series Test are met, the series Z converges.
n=1
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2) Alternating Series with Factorial Terms

9] _l n-1
- Determine if the series Z( ) converges.
n=1
0 _1 n-1
- The given series is: Z( )
n=1 n!
. : 1 1 .
- Check if the terms a, =— are decreasing: g,,;, = <—=a, (Thisis true for all n.)
n! (n+1)! n!

1
Check if the terms a, approach zero: lim - =0
n—o n.

e} _1 n-1
Since both conditions of the Alternating Series Test are met, the series Z

n=1

converges.

3) Series Not Approaching Zero

= 4 n
Determine if the series Z(—l)” ' — converges.
n+

n=1

S a o h
- The given series is: Z(—l)” P
oy n+1
. ) n+l n
- Check if the terms a, = are decreasing: 0,,, =——<——=4a,
n+1 n+2 n+1

- This is true for all n.

. n
- Checkif the terms a, approach zero: lim——=1#0
nson+41

= 4 n
- Since the terms do not approach zero, the series 2(—1)" 1—1 diverges.
+

n=1
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11-8. Ratio Test for Convergence

The Ratio Test is a useful method for determining the convergence or divergence of an infinite series,
particularly when the terms of the series involve factorials, exponentials, or other expressions where
successive terms can be easily compared.

Theorem (Ratio Test):

an+1

0
Given a series ZGn ,let: L=1lim
a
n

n—o

n=1

- If L<1,the series 20n converges absolutely.

n=1

- If L>1 or L=00, the series ZGn diverges.

n=1

- If L=1, the testis inconclusive, and the series may converge or diverge.

Examples:

1) Convergence of a Series with Factorials

o0
- : n! :
Determine if the series Z—n converges or diverges.

n=1

n!
Apply the Ratio Test: a, = 2_”

a n+1)! 2" n+1)-nl 2" |n+1
- Calculate the ratio of successive terms: "_+1:( n+1) _:%._:_
a, 2 n! 2:2 n! 2
. |ln+1 . h+1
- Evaluate the limit: L=I|m| |:Ilm =
n—)oo| 2 | n— 2

> n!
- Since L =0, the series Z—n diverges.

n=1
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2) Convergence of a Series with Exponential Terms

n

Determine if the series Z—I converges or diverges.
n=1

Apply the Ratio Test: a, =—

n!
: : Gy 3™ | | 3 |
- Calculate the ratio of successive terms: == .
a, (n+1)I 3” |n+1) 3" nl | +1 |
oo 3] 3
- Evaluate the limit: L = lim =lim =0

] e

n

Since L=0<1, the series Z—I converges absolutely.
n!
n=1

3) Inconclusive Ratio Test

Determine if the series Z— converges or diverges using the Ratio Test.
n=1 n

- Apply the Ratio Test: a, =—

n
- Calculate the ratio of successive terms: L | /(n+1)|_| |= -
| | 1/n | |n+1| n+1
- . 1
- Evaluate the limit: L=Ilim{1-——|=1
nol n+1

- Since L =1, the Ratio Test is inconclusive.

- The series Z— is known to diverge, but we would need a different test (e.g., the Integral Test) to
n
n=1

confirm this.
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11-9. Determining Absolute or Conditional Convergence

When analyzing the convergence of series, it is important to distinguish between absolute
convergence and conditional convergence.

1. Absolute Convergence: A series Zan is said to converge absolutely if the series of absolute values

Zlan | converges. Absolute convergence implies convergence.

2. Conditional Convergence: A series Zan converges conditionally if it converges but does not

converge absolutely. This means Zan converges, but Z|an | diverges.

Tests and Definitions

1. Absolute Convergence Test:

-If Zlan | converges, then Zan converges absolutely.

2. Conditional Convergence:

- If Zan converges but an | diverges, then Zan converges conditionally.
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1) Absolute Convergence of a Series with Alternating Terms

0 _l n
Determine if the series Z( 2)

n=1

converges absolutely or conditionally.

(1)
n2

- 1
-3

0
To check for absolute convergence, consider the series of absolute values: Z
- hn
n=1

n=1

This is a p-series with p=2>1, so it converges.

(-1)"

2

0
Since Zlan | converges, the original series Z

n=1

converges absolutely.

2) Conditional Convergence of the Alternating Harmonic Series

[e'e] _1 n-1
Determine if the alternating harmonic series Z

n=1

converges absolutely or conditionally.

(_l)n—l
n

31

o0
To check for absolute convergence, consider the series of absolute values: Z
- n
n=1

n=1

This is the harmonic series, which diverges. Since Zk}n | diverges, the original series does not

converge absolutely.

Next, check for conditional convergence using the Alternating Series Test:

1 1
The terms — are positive, decreasing, and approach zeroas n —o: lim—=0
n n—oo n

. &)
Since the series E
n=1 n

meets the criteria of the Alternating Series Test, it converges.

n-1

Therefore, the series Z

n=1

converges conditionally.
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11-10. Alternating Series Error Bound

The Alternating Series Error Bound (also known as the Alternating Series Remainder) provides a way
to estimate the error when approximating the sum of an alternating series by its partial sums. This
error bound is useful for determining how close the partial sum is to the actual sum of the series.

o0
Given an alternating series Z(—l)”_lan, where @, are positive, decreasing, and lima, =0, the error

n—>o
n=1

R, when approximating the sum by the N —thpartialsum S_N is bounded by the absolute value of
the first omitted term:
|RN |:|S_SN| S0y,

where S is the actual sum of the series and S, is the N-th partial sum.

Formulas:

- Error Bound for Alternating Series: |S —SN| <a,,

where S is the actual sum, S, is the N-th partial sum, and a,,,, is the (N +1)-th term of the series.

N+1

Examples:

1) Estimating the Sum of an Alternating Series

0 _1 n-1
Consider the alternating harmonic series Z( ) . Estimate the sum using the first 5 terms and

n=1 n
provide an error bound.

. BT X o e
- The given series is: Z =
o n 2

1 1 1 1
- Calculate the 5th partial sum S, : S, =1—E+§—Z+§:1—0.5+0.333—0.25+0.2:0.783

1
- The error bound is given by the absolute value of the 6th term: |R; |[<a, :E ~0.167

- So, the actual sum S is within 0.167 of 0.783: | S—0.783|<0.167
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2) Estimating the Sum of Another Alternating Series

(-1)"

2

- Consider the alternating series Z . Estimate the sum using the first 4 terms and provide an

n=1

error bound.

5(-1)" 0 01 01 1 1
- The given series is: = + - 4+~ ...
Z:‘ n’ 12 22 3¢ 4

1 1 1
- Calculate the 4th partial sum S,: S, = —1+Z—§+E =-1+0.25-0.111+0.0625=-0.7985
o 1 1
- The error bound is given by the absolute value of the 5th term: |R, |<a; 2? :E =0.04

- So, the actual sum S is within 0.04 of -0.7985: | S+ 0.7985|< 0.04

3) Estimating the Sum of a Converging Alternating Series

0 _1 n-1
- Consider the alternating series Z ;— - Estimate the sum using the first 3 terms and provide an
n=1 n
error bound.
0 _1 n-1 1 1
- The given series is: Z( )3 :1__3+_3_...
n=1 n 2 3

1 1
- Calculate the 3rd partial sum S,: S, = 1_§+E: 1-0.125+0.037=0.912

1 1
- The error bound is given by the absolute value of the 4th term: |R; |[<a, = E = 6_4 ~0.0156

- So, the actual sum S is within 0.0156 of 0.912: | S—0.912|<0.0156
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11-11. Finding Taylor Polynomial Approximations of Functions

Taylor polynomials provide a way to approximate functions near a specific point using polynomials.
These approximations are derived from the derivatives of the function at that point. The Taylor
polynomial of degree n for a function f(x) centered at x =a is given by:

Pn(X)Zf(0)+f'(a)(x—a)+m(x_a)2 I ool

" (a)
2! n!

(x—a)’

For a =0, the Taylor polynomial is often referred to as the Maclaurin polynomial.

Formulas:

1. Taylor Polynomial of Degree n Centered at a:

n (k)
p0=3 LDy

where f(k)(a) denotes the k $-th derivative of $ f evaluated at a S.

2. Maclaurin Polynomial (Special case with$a=0):

n £l
P (x)= Z—f kfo)xk
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Examples:

1) Taylor Polynomial of ¢* Centered at a =0 (Maclaurin Series)

- Find the Maclaurin polynomial of degree 4 for f(x)=e".

- For f(x)=e", all derivatives are f*)(x)=e*, and evaluated at x =0, we have f*(0)=1.

- The Maclaurin polynomial of degree 4 is:

2 3 4

XX
P(X)=1+x+—+—+—
30 41

2 3 X4
P(x)=1+x+—+—+—
24

2) Taylor Polynomial of sin(x) Centered at a =0 (Maclaurin Series)

Find the Maclaurin polynomial of degree 5 for f(x)=sin(x).

For f(x)=sin(x), the derivatives cycle as follows:

f'(x)=cos(x), f"(x)=-sin(x), f"(x)=—cos(x), f“(x)=sin(x), andsoon

Evaluatingat x=0:

f0)=0, f(0)=1, f"(0)=0, f"(0)=-1, f*(0)=0, f¥(0)=1

3 XS

The Maclaurin polynomial of degree 5is: P,(x)= x—§+;

X3 5
P(x)=x——+
+(x) 6 120
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3) Taylor Polynomial of In(1+ x) Centered at a =0 (Maclaurin Series)

Find the Maclaurin polynomial of degree 3 for f(x)=In(1+x).

For f(x)=In(1+ x), the derivatives are:

1 " _ 2
wer T Ty

)=y F0=-
1+x

Evaluatingat x=0:
f(0)=In(1)=0, f'(0)=1, f"(0)=-1, f"(0)=2

The Maclaurin polynomial of degree 3 is:

2

x2 22X

%(X) 0+X—;+?
2 X3
BX)=x——+—
d 2 3

4) Taylor Polynomial of cos(x) Centeredat a=7/4

Find the Taylor polynomial of degree 2 for f(x)=cos(x) centeredat a=7/4.

For f(x)=cos(x), the derivatives are:
f'(x)==sin(x), f"(x)=-cos(x), f"(x)=sin(x)

Evaluatingat x=7/4:

2 V2
2

f(r [/ 4)=cos(r / 4) =g, f(m/4)=—sin(r /4)= - f'(r/4)=—cos(r [ 4)=——

The Taylor polynomial of degree 2 is:
P,(x)=cos(x /4)—sin(x [/ 4)(x — 7 [ 4) -

h(x )—i—i( - /4)—%&—#/4)2

%’ﬁ/‘”(x—zw
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11-12. Lagrange Error Bound

The Lagrange Error Bound provides a way to estimate the error when using a Taylor polynomial to
approximate a function. This error bound is particularly useful for understanding how closely the
Taylor polynomial approximates the actual function.

For a function f that is approximated by its Taylor polynomial P,(x) of degree n centered at a, the

Lagrange Error Bound gives an estimate for the error R (x) at a point x within the interval of

approximation. The error bound is given by:

IR, (X) = | £ ()P, ()| < —2
+1

||X_a|n+1

)

(n

where M is an upper bound for the absolute value of the (n+ 1)-th derivative of f on the interval
containing a and x.

Examples:

1) Estimating the Error for e*

2
X
Approximate e* using the second-degree Maclaurin polynomial P,(x) =1+ x +7 and find the

error bound for x=0.1.

2
X
- The Maclaurin polynomial of degree 2 for e is: P,(x) = 1+x+?

- The (n+1)-th derivative for e* is also e”. Since " is increasing, the maximum value of " on the
interval [0, 0.1] occurs at x=0.1: M=e*' ~1.105

- Apply the Lagrange Error Bound:

M 1.105 1.105
|R,(0.1)[<—]0.1-0P=—""=(0.1)> =
3! 6 6000

~0.000184

- So, the error bound for the approximation at x =0.1 is approximately 0.000184.
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2) Estimating the Error for sin(x)

3
X
- Approximate sin(x) using the third-degree Maclaurin polynomial P;(x) = X_E and find the error

bound for x=0.5.

3
X
- The Maclaurin polynomial of degree 3 for sin(x) is: P,(x) :x—?

- The (n+1)-th derivative for sin(x) is cos(x) or —cos(x). The maximum value of |cos(x)| on the
interval [-0.5,0.5] is 1.

- Apply the Lagrange Error Bound:

1

M . 1 1 1
R,(0.5)|<—]0.5-0['=—
|R,(0.5)] 4!I I ”

(0.5) =—.—=——~0.0026
24 16 384

- So, the error bound for the approximation at x =0.5 is approximately 0.0026.

3) Estimating the Error for In(1+ x)

2
X
Approximate In(1+ x) using the second-degree Taylor polynomial centered at a =0, P,(x)=x —?

, and find the error bound for x=0.2.

2
X
- The Taylor polynomial of degree 2 for In(1+ x) is: P,(x)=x —?

. (=)
- The (n+1)-th derivative for In(1+x) is .
(1+x)
. | (-1 | . | 1
- The maximum value of 1= - onthe interval [0, 0.2] isat X = 0: M=—=1
L+ x| (1+x) 1

- Apply the Lagrange Error Bound:

1 ~0.008

M 1
|R,(0.2)|<—]0.2—0==(0.2)> ==-0.008 = ~0.00133
2 3! 6 6

- So, the error bound for the approximation at x =0.2 is approximately 0.00133.
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11-13. Understanding Euler’s Method

Euler’s Method is a numerical technique used to approximate solutions to ordinary differential
equations (ODEs). Given an initial value problem of the form:

Yty vix)=v,
dx

Euler's Method approximates the solution by iterating over small steps, using the slope at each point
to estimate the next point.

Steps:

1. Starting Point: Begin with the initial condition (x,,y,).

2. Step Size: Choose a step size h.

3. Iteration: Use the following formula to find successive points:
Vour =Y, th-fx,,y,)

X,., =X, +h

This process is repeated for the desired number of steps or until a specific value of x is reached.

Summary:

Euler’s Method is a straightforward numerical approach for approximating solutions to ordinary
differential equations. By iterating with a small step size, it provides a sequence of approximations that
converge to the actual solution as the step size decreases.

Examples:

1) Approximating y for a Simple Differential Equation

d
- Use Euler’s Method to approximate the solution to d—y =x+y with y(0)=1 at x=0.2 using a
X

step sizeof h=0.1.

- Initial condition: x, =0, y, =1

- Stepsize: h=0.1
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- lIteration 1:
o flx,,¥,)=f(0,1)=0+1=1
o y,=Y,+h-flx,,y,)=1+0.1-1=1.1
o Xx,=Xx,+h=0+0.1=0.1

- lIteration 2:

o f(x,y,)=£0.1,11)=01+1.1=1.2
o y,=y,+h-f(x;,y,)=11+0.1-1.2=1.22
o X,=x,+h=0.14+0.1=0.2

- Therefore, the approximate value of y at x=0.2 is y =1.22.

2) Approximating y for a Differential Equation with Nonlinear Terms

, . . dy 2 . _ _
Use Euler’s Method to approximate the solution to d_ =y—x"+1 with y(0)=0.5 at x=0.2
X

using a step size of h=0.1.

- Initial condition: x, =0, y,=0.5

- Stepsize: h=0.1

- Iteration 1:
o flx,,Y,)=f(0,05=05-0"+1=1.5
o y,=y,+h-fl(x,,y,)=0.5+0.1-1.5=0.65
o Xx,=x,+h=0+0.1=0.1
- Iteration 2:
o fl(x,y,)=£(0.1,0.65)=0.65—(0.1* +1=1.65-0.01=1.64
o y,=y,+h-f(x,,y,)=0.65+0.1-1.64=0.814
o X,=x,+h=0.14+0.1=0.2

- Therefore, the approximate value of y at x=0.2 is y =0.814.
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11-14. Finding Taylor or Maclaurin Series for a Function

The Taylor series of a function provides a polynomial approximation of the function around a point a.
When the point a is zero, the series is known as the Maclaurin series. These series are powerful tools

for approximating functions using an infinite sum of terms derived from the function's derivatives at a
single point.

Formulas:

) (n)
1. Taylor Series: f(x)= Z f fa)
n!

n=0

(x—a)" where f"(a) is the n-th derivative of f evaluated at x=a

© (n)
0
2. Maclaurin Series (special case of the Taylor seriesat a=0): f(x) = Z A )X"

n=0 n l

Examples:

1) Maclaurin Series for e*

- Find the Maclaurin series for f(x)=e".

- The function e* and all its derivatives are e*. At x=0, we have f"(0)=1 forall n.

© Xn XZ X3
- The Maclaurin series is: e* =Z—=1+X+—+—+---
= n! 21 3l




eSpyMath AP Calculus AB/BC Textbook 314

2) Taylor Series for sin(x) Centeredat a=7/4

Find the Taylor series for f(x)=sin(x) centeredat a=7/4.

The derivatives of sin(x) cycle as follows:

flx)=sin(x), f'(x)=cos(x), f"(x)=—sin(x), f"(x) =—cos(x)

Evaluatingat x=7/4:

flz /4)=sin(z / 4) :?, f'( [ 8)=cos(7 / 4) =g

V2 b

f'(r/4)=—sin(z [/ 4)= - f"(7 /4)=—cos(n [ 4)=~— .

The Taylor series is:

NG V2 2
2

sin(x): +T(X—7Z'/4)—T(X—7Z'/4)2—?(X—ﬂ'/4)3+

3) Maclaurin Series for cos(x)

Find the Maclaurin series for f(x)=cos(x).

The derivatives of cos(x) cycle as follows:

f(x)=cos(x), f'(x)=-sin(x), f"(x)=—cos(x), f"(x)=sin(x)

Evaluatingat x=0:

fl0)=1, f(0)=0, f"(0)=-1, f"(0)=0

The Maclaurin series is:

(1) x> X
cos(x) = Z(z Tl ;-FZ—
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11-15. Representing Functions as Power Series

A power series is an infinite series of the form:

icn (x—a)"

where ¢, are the coefficients, a is the center of the series, and x is the variable. Power series can

represent functions within their radius of convergence. Many functions can be expressed as power
series, allowing for powerful techniques in analysis and approximation.

Theorems and Tests:

1. Radius of Convergence: The radius of convergence R of a power series ZCH (x—a)" is found using:
n=0

1
—=limsup|c, ["
R

n—o

Cn

c

or the Ratio Test: R=1im

n—oo

n+1

2. Interval of Convergence: The interval of convergence is the set of x S-values for which the series
converges. This interval is (a-R, a+R) , and endpoints must be checked separately.
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Examples:

1) Power Series Representation of =
—X

centered at a=0.

- Find the power series representation of f(x)=

- The function can be expressed as a geometric series for | x|<1:

1—x
1 N n

- The radius of convergence R is 1, and the interval of convergence is (—1,1).

2) Power Series Representation of e*

- Find the power series representation of f(x)=e" centeredat a=0.

- The function e* and all its derivatives are e . The Maclaurin series is:

0 n

oo X
n=0 n!

- The radius of convergence R is infinite, and the interval of convergence is (—o0,0).

3) Power Series Representation of sin(x)

- Find the power series representation of f(x)=sin(x) centeredat a=0.

- The Maclaurin series for sin(x) is:

00 _1 n
( ) X2n+1

- The radius of convergence R is infinite, and the interval of convergence is (—0,0).
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